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Automatic techniques for geometry optimization are applied in conjunction 
with configuration interaction and perturbation treatments of electron cor- 
relation. The computational effort and numerical accuracy of the optimizations 
are discussed, as well as problems with approximate correlation methods 
concerning the continuity of the potential surface. The optimized geometries 
of fourteen molecules obtained with different correlation treatments (MNDO 
SCF MOs) are compared. The configuration interaction results are reproduced 
satisfactorily by simple perturbation approaches. The largest change of the 
optimized SCF geometry is found for hydrogen peroxide. 
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1. Introduction 

The investigation of potential surfaces plays a central role in theoretical treatments 
of chemical rate processes. For a given reaction, the local minima corresponding to 
reactants and products, and the transition state for their interconversion must be 
located on the surface. A complete geometry optimization for these stationary 
points is required to obtain meaningful results. 

The most efficient of the optimization procedures available [1, 2] make use of the 
gradient of the potential energy with respect to the geometric variables. The 
geometries of stable molecules are found by minimizing their energy using a quasi- 
Newton method such as the Davidson-Fletcher-Powell (DFP) method [3, 4] or the 
Murtagh-Sargent method [5]. Transition states can be located by minimizing their 
gradient norm [6] via a generalized least-squares algorithm [2, 7]. 

Different variants of these optimization procedures have been applied in conjunc- 
tion with semiempirical SCF wavefunctions [6, 8-10] as well as ab initio SCF wave- 
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functions [11-15], but there seems to be only little experience with correlated 
wavefunctions [16]. In the present paper, we describe a systematic study of geometry 
optimizations with explicit inclusion of electron correlation based on semiempirical 
molecular orbitals (MOs). Since the semiempirical methods used have been 
parametrized at the SCF level, an improved agreement between calculated and 
observed geometries cannot be expected. Therefore the present study is primarily 
concerned with the optimization techniques applied, the performance of different 
correlation treatments, and the general trends of the numerical results. 

2. Computational Methods 

Our program package allows SCF calculations to be carried out by the semi- 
empirical MNDO [17], MINDO/3 [18], and CNDO/2 [19] procedures. Electron 
correlation can be treated explicitly by defining a set of main configurations and 
including the effects of the singly and doubly excited configurations in the following 
manner: 

a) CI: Configuration interaction with all configurations generated. 
b) SELCI: Configuration interaction with selected configurations [20]. 
c) PERTCI: SELCI followed by a second-order BWEN perturbation treatment 

for the remaining configurations [20]. 
d) RSMP, RSEN, BWEN: Second-order perturbation treatment for all con- 

figurations [21] (RS Rayleigh-SchrSdinger, BW Brillouin-Wigner, MP M~ller- 
Plesset [22], EN Epstein-Nesbet [23, 24]). 

Calculations for singlet, doublet, and triplet states are feasible based on closed-shell 
SCF molecular orbitals [20]. 

For any combination of these options, the geometry of a stable molecule can be 
optimized by a modified DFP method [3, 4, 25]; the search routines are essentially 
the same as in the available MNDO program [26]. The structures of transition 
states can be located by a modified nonlinear least-squares method [9, 25]. 

Rather than cover all combinations of options, the following chapters will focus 
on the DFP optimization of ground-state singlets, using MNDO for the SCF 
procedure and defining the SCF determinant to be the only main configuration. 

3. Optimization Technique 

The DFP method [3, 4] is an iterative procedure which corrects the current set of 
geometrical variables x k (kth iteration) according to: 

x T M  = x ~ - a ~ H k g  ~ (1) 

where g~ is the gradient vector evaluated at x ~.H k is a positive-definite matrix 
which approximates the inverse Hessian matrix and is updated in each iteration by 
the standard formula [2-4]. ~k is a scalar which is determined in a line search such 
that the energy E ( x  k+ 1) is a minimum along the search direction vector - H k g  ~. 

Starting from an initial point x ~ with the gradient gO and an initial estimate H ~ 
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obtained from a second gradient calculation at x ~ + Ax ~ [25], the optimization 
proceeds completely automatically until the convergence criteria chosen are 
fulfilled. 

The DFP method requires the evaluation of the gradient at least once for each 
iteration. For variationally optimized SCF wave-functions (including MCSCF), the 
gradient can be calculated analytically [8, 11, 14, 15] or by finite difference keeping 
the density matrix constant and recalculating only the relevant integrals [9, 12, 13]. 
With semiempirical MO methods, both approaches yield the gradient very effici- 
ently; the computation time is usually less than a tenth of that for an SCF calculation. 
Including electron correlation explicitly by one of the methods listed, the energy is 
no longer stationary with respect to the LCAO coefficients, and each component 
g~ of the gradient vector must be computed by a central difference formula: 

g~ = E ( x  k + d~e~) - E ( x  k - d~e,) ~ ~ E ( x  k) 
2d, ~ ax-----~. ~ (2) 

where 4 is an increment (see below), and e~ a vector with i ts / th component unity 
and the other components zero. For N~ variables 2N~ full calculations are necessary 
to obtain the gradient. 

In the original DFP method [3, 4], a cubic interpolation formula is used in the line 
search to determine a k in Eq. (1) which requires N~c evaluations of the energy and 
the gradient (average N~o ~ 2-3). This procedure is feasible in conjunction with 
SeE wavefunctions since the gradient is obtained at little cost. For correlated 
wavefunctions, it is advantageous, however, to carry out a parabolic line search 
with Nz~ evaluations of the energy only (average Igt~ ~ 5). 

The overall computational effort for a geometry optimization with N~ DFP 
iterations is estimated in the following way: For SCF wavefunctions, 2 + Ndg~ = 
M, evaluations of the energy and the gradient are needed, each of them with an 
average computation time r,. For correlated wavefunctions, there are 2(1 + 2N~) 
+ N~(ATzp + 1 + 2N0 = Mc evaluations of the energy, with an average computa- 
tion time %. The ratio of total computation times is then approximated by: 

t~ M~% [ 4 + 2N~ 2 + -NzpN~] % rc 
- m  ~ [N~ + , - - ~ N o - -  (3) 

As indicated, the term in the square brackets is usually of the order N~, for typical 
optimization runs. The computational effort for geometry optimizations with 
inclusion of electron correlation thus increases linearly with the number of vari- 
ables, contrary to the SCF case. 

Table 1 contains some actual computation times for ethane. The increase in 
computation time for BWEN compared to SCF is mostly due to the higher number 
M of function evaluations. For the other correlation treatments, there is the 
additional effect that the time for a single function evaluation is much greater than 
in the SCF case. As a consequence, the CI optimization of ethane is more expensive 
than the SCF optimization by about two orders of magnitude (see Table 1). For 
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Method N~ b M e t (sec) a 

SCF 3 10 
BWEN 3 47 
SELCI ~ 4 56 
PERTCI e 3 46 
CI 3 46 

Table 1. Computation times for the geometry optimization 
of ethane a 

49 a Starting geometry: Experimental values. SCF procedure: 
271 MNDO. 

1780 b Number of DFP iterations. 
~ Number of function evaluations (see text). 

2600 d CPU times for a TR 440 computer. 
5697 ~ Threshold parameter [20] T = 0.002 eV. About 100 of 350 

configurations are selected. 

larger  molecules,  geomet ry  opt imizat ions  with inclusion of  e lectron corre la t ion thus 
seem to be feasible only when using a simple pe r tu rba t ion  t rea tment  such as 
B W E N .  

Having  discussed the basic op t imiza t ion  technique and the computa t iona l  effort 
involved,  we shall  now turn to problems  of  numerical  accuracy.  

The main  convergence cr i ter ion for  D F P  opt imiza t ions  requires all componen t s  of  
the gradient  vector  to be smaller  in absolute  value than  1 kcal  m o l -  ~ A -  ~ for  b o n d  
lengths, and  1 kcal  m o l -  ~ r a d -  ~ for  angles. Wi th  these choices, the bond  lengths 
and angles are op t imized  to an accuracy of  a t  least  + 0 .001/~ and + 0.1 ~ respec- 
tively, unless the potent ia l  surface is extremely fiat. Table  2 lists the results o f  
M N D O - C I  opt imiza t ions  for  fo rmaldehyde  s tar t ing f rom five different init ial  
geometr ies;  in this case, the opt imized  b o n d  lengths are reproducible  to + 0.0001 A,  
and the opt imized  bond  angles to + 0.01 ~ 

Table 2. MNDO CI geometry optimizations for formaldehyde ~ 

Starting geometry b Optimized geometry 

Run Rco (A) Rca(h) 0aco (deg) Roo(A) Rca(A) Oaco(deg) AH~ (kcal/mole) 

A 1.208 1.116 121.75 1.2284 1 .1125  123.62 - 50.4078 
B 1.300 1.116 121.75 1.2285 1 .1125  123.60 - 50.4078 
C 1.208 1.000 110.00 1.2284 1 .1125  1 2 3 . 6 0  -50.4078 
D 1.150 1.150 126.00 1.2285 1 .1125  123.60 -50.4078 
E 1.216 1.106 123.52 1.2283 1.1124 123.61 - 50.4078 

a The computation times for the five runs differ by a factor of 1.8 at most. The number of 
function evaluations varies between 37 (E) and 66 (C). 

b Starting geometries: A experimental, B-D arbitrary, E SCF-optimized. 
c Final heat of formation. 

In  the gradient  calculat ion,  see Eq. (2), the s tandard  values for the increments  d~ are 
0.001 A for bond  lengths, 0.2 ~ for  bond  angles, and  0.5 ~ for d ihedra l  angles. A 
gradient  of  1 kcal  mo1-1 A -1 then corresponds  to an energy difference of  10 -4 eV 
in the numera to r  of  Eq. (2). In  order  to  ob ta in  meaningful  gradients  close to the  
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minimum by finite difference, the energy must be computed with an accuracy which 
is appreciably better than 10 -4 eV. Therefore, as the gradient norm decreases in 
the course of the optimization, the SCF convergence limit is reset from 10 -4 eV to 
10 -5 eV, and finally to 10 -6 eV. 

Additional problems can arise from the treatment of correlation (see Chapter 2): 
The SELCI approach is based on the concept that all important configurations 
should be selected and included in the configuration interaction. For a balanced 
description of the potential surface, a selection should be carried out at each point. 
If  the space of selected configurations is different for different points, the surface 
becomes discontinuous, and the automatic optimization procedures described are 
no longer applicable. In principle, these considerations hold true analogously for the 
PERTCI treatment. 

It is therefore not surprising that straightforward SELCI optimizations often fail to 
converge due to the selection of different configurations. On the other hand, 
PERTCI optimizations are usually successful although there are cases when they 
do not converge. This different behavior of SELCI and PERTCI is related to the 
fact that, for numerical purposes, the potential surface needs to be continuous only 
with an accuracy of the order of 10-4-10 -5 eV. In PERTCI, a different selection 
just changes the partitioning of configurations into selected and remaining con- 
figurations [20], with very small effects on the energy, whereas in SELCI it changes 
the dimensionality of the configuration space which influences the energy rather 
strongly. Hence, PERTCI optimizations can still be numerically successful for 
slightly varying selections, contrary to SELCI optimizations. 

In order to cope with these problems, two options have been added to our program 
which allows us to keep the space of selected configurations constant either during 
the whole optimization or during each gradient calculation. It is recommended to 
use the first option with SELCI, and the second option with PERTCI, which in our 
test cases removed the problems encountered. When working with a constant space 
of selected configurations throughout the whole optimization, the initial selection 
should include all configurations which are relevant on any part of the potential 
surface searched during the optimization [27-29]. 

As for the selection procedure, it should also be noted that the two linearly indepen- 
dent singlets generated in the four-electron problem should both be selected if one of 
them meets the selection criteria. Otherwise the ambiguity in the definition of 
these singlets [21] causes optimization problems. 

The application of EN perturbation theory to systems with degenerate orbitals 
presents another problem since the energy obtained is not invariant to unitary 
transformations among the degenerate orbitals [21,30]. In MNDO-BWEN 
calculations for a set of 15 molecules the average magnitude of the energy changes 
due to such transformations turns out to be of the order 5.10 -3 eV. This is far 
above the limit of 10-~-10- 5 eV needed for numerical stability of the optimization. 
On the other hand, it is small enough to introduce the following convention: In an 
EN perturbation treatment, any degenerate MOs are transformed such that they 
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conform to the symmetry of a point group with nondegenerate irreducible represen- 
tations only (e.g. D~h -* D2h, Ca~ -* Cs, etc.). This convention leads to a unique 
definition of the potential surface, and removes the optimization problems 
encountered. 

4. Results and Discussion 

The molecular geometries optimized with explicit inclusion of electron correlation 
are expected to differ from the optimized SCF geometries. The present chapter deals 
with these changes and their dependence on the specific correlation treatment used 
(see Chapt. 2). SELCI, PERTCI and various second-order perturbation approaches 
(e.g. BWEN) can be regarded as an approximation to a CI treatment including all 
singly and doubly excited configurations generated. It is therefore particularly 
interesting to find out how well these approaches can reproduce the CI results. 

0.0 

-0.5 

115 113 105 74.53 Z9 13 5 2 2 

L.U z~- -,==I ~ 
-10 

C2HI / 

PERICI 

l q / I  I I I I / -  

0 I(] ~; I0 ~ I0 "z 101 "" 
T/eV , 

Fig. 1. MNDO energy decrease AE of 
ethylene as function of the threshold 
parameter T. The number of selected 
configurations is given in the top row 
(total number 125) 
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Fig. 2. MNDO energy decrease AE of 
propane as function of the threshold 
parameter T. The number of selected 
configurations is given in the top row 
(total number 1365) 

Figures 1 and 2 show the MNDO correlation energy of ethylene and propane at 
their experimental geometries, as a function of the threshold parameter T used in 
the selection procedure [20]. A configuration is selected if its interaction with the 
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main configuration, as estimated by second-order BWEN perturbation theory, is 
larger than T. The case T = 0 corresponds to a selection of all configurations (CI), 
and the case T = oo to the selection of no configuration (SCF result for SELCI 
curve, BWEN result for PERTCI curve). It is obvious from the figures that PERTCI 
reproduces the CI results very closely, whereas SELCI deviates appreciably for 
larger T values. 

Fig. 3. Optimized bond lengths Rcc and 
Rcn of ethylene as functions of the 
threshold parameter T. The number of 
selected configurations is given in the 
top row (total number 125). 
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Figure 3 shows a similar plot for the optimized bond lengths of ethylene (analogous 
results are obtained for formaldehyde). Again, PERTCI turns out to be superior to 
SELCI since the PERTCI curve is much smoother and closer to the CI result. The 
PERTCI bond lengths are rather insensitive to the actual value of the threshold 
parameters; T = 0.002 eV seems to be a good choice both for SELCI and PERTCI. 
For larger T values, the SELCI results are inferior even to BWEN (see Fig. 3). 

Table 3 lists the SCF optimized geometries (MNDO) for a set of fourteen molecules, 
along with the changes due to explicit inclusion of electron correlation. First of all, 
it is gratifying that all correlation treatments studied lead to geometry changes in 
the same direction and of similar magnitude. The PERTCI results match the CI 
ones almost perfectly, while SELCI shows occasional deviations. As for the 
perturbation treatments, the geometry changes due to correlation are usually 
underestimated by RSMP, and overestimated by RSEN. BWEN reproduces the 
CI values quite well, and is the best of the perturbation treatments in this respect. 
The geometry changes in Table 3 follow a typical pattern. Single bonds are usually 
lengthened by about 0.005/~, and multiple bonds by about 0.020 A (triple bonds 
somewhat more than double bonds). Bond angles at carbon are affected only 
slightly whereas bond angles at nitrogen and oxygen are usually reduced by about 
0.5 ~ leading to more compact structures. 
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Drastic geometry changes are only found for hydrogen peroxide (except with 
SELCI, see Table 3). The MNDO SCF minimum corresponds to the trans-confor- 
mation, with a dihedral angle of 180 ~ Upon inclusion of electron correlation, the 
minimum occurs at a C2 structure with a dihedral angle of 132.6 ~ (CI), in much 
better agreement with the experimental value of 119.1 ~ [31]. This improvement 
should, however, be regarded as partly fortuitous since electron correlation favors 
the C2 structure just by 0.15 kcal/mol relative to the trans-structure. This is sufficient 
to shift the minimum since the MNDO SCF potential curve for the internal rotation 
of hydrogen peroxide is extremely flat between 130 ~ and 180 ~ . On the other hand, 
the experimental trans-barrier is 1.I kcal/mol [32]; the calculated MNDO CI 
trans barrier of 0.1 kcal/mol indicates that only a small part of the barrier is due to 
correlation effects. This agrees with ab initio SCF calculations [33] which find 
almost no barrier with an sp-basis set, but a barrier close to the experimental one 
when adding polarization functions to the basis set. Similarly, another recent 
ab initio study [34] concludes that electron correlation does not affect the calculated 
barrier heights significantly. 

A comparison with experimental data is not included in Table 3 since the MNDO 
method has been parametrized to reproduce experimental geometries at the SCF 
level [17]. An improved agreement between calculated and observed structures can 
therefore be expected only if the method is reparametrized using an explicit 
correlation treatment. Note that a parametrization of this kind has recently been 
used to develop the LNDO/S method [35], for the calculation of excitation and 
ionization energies. 

5. Conclusions 

Automatic geometry optimizations with explicit inclusion of electron correlation 
can be carried out by the DFP method or a nonlinear least-squares algorithm 
requiring only relatively small modifications of existing programs. The main 
drawback of such calculations is the high computational effort involved, compared 
to SCF geometry optimizations. Therefore, approximate treatments of electron 
correlation are needed, especially for larger molecules. 

In conjunction with the semiempirical MNDO method, the optimized geometries 
obtained by CI are reproduced very well by PERTCI, and satisfactorily by BWEN, 
whereas SELCI is clearly inferior to PERTCI and much more expensive than 
BWEN. Hence, in geometry optimizations, the correlation treatments CI, PERTCI, 
and BWEN are recommended. For larger systems, only BWEN is expected to be 
computationally feasible. 

Finally it should be pointed out that the optimization techniques described can, in 
principle, also be applied with correlated ab initio wavefunctions. Due to the 
extensive computational effort in the ab initio case, however, gradient-based 
geometry optimizations with explicit inclusion of electron correlation will probably 
be restricted to semiempirical calculations in the near future. 
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